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MTI OPTIMIZATION IS A MULTIPLE-CLUTTER ENVIRONMENT

INTRODUCTION

The performance of a radar is often limited by echoes from external clutter that are
large compared with internal noise. In many practical situations targets have a radial
velocity component with respect to the clutter scatterers. In this case, doppler discrim-
ination can be used to enhance the signal-to-clutter ratio. This type of processor has
been discussed extensively in the literature [1-6]. Usually the treatment is limited to
the case in which the clutter is assumed to be of a single type with a certain spectral
density function. However, in reality, the radar echoes may contain more than one type
of clutter. For instance, they may contain ground clutter and also weather clutter.
These two clutter types may have entirely different spectral density functions, or they
have the same spectral density function, but with different mean values and variances.
In this report the design of an optimal filter for such a multiple-clutter environment will
be presented. The optimization procedure is based on the solution of the minimum
eigenvalue of the clutter covariance matrix. The results, therefore, represent a theoretical
limit of the performance of such an MTI system. Elements of such a clutter covariance
matrix depend not only on the spectral density functions of all the clutter types present,
but also depend on the relative radar cross sections and the difference in mean doppler
frequencies of the clutter types. In this report, MTI performance as related to these
parameters will be discussed, and performance bounds of an MTI system as related to
these parameters will be presented.

MTI IMPROVEMENT FACTOR FOR A MULTIPLE-CLUTTER-TYPE ENVIRONMENT

Assume that a sequence of identical radar pulses is transmitted with an equal inter-
val of time, T, between pulses. For simplification, without losing generality, assume that
the radar pulses are not modulated and that the received signal is sampled at a rate of
twice per range resolution cell.* The correlation function of the radar returns between
the ith and jth pulses can be represented [7] by

00

Rij = C f G(f) exp [27rfT(i- j)] df, (1)

where C is the average radar cross section of the clutter and G(f) is the power spectral
density function of the clutter. The quantity T is the interpulse spacing.

Assume that the radar return contains two types of clutter. These two types may
have two entirely different spectral density functions, or they may have the same spectral
density function but different mean dopplers and variances. In any case, they are assumed

*In this case the range resolution cell is equal to the radar pulse length.
Note: Manuscript submitted January 8, 1975.
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to be two independent, uncorrelated random processes. The correlation function of such
clutter returns can be represented by

Rij = C1 | Gl(f) exp [2irfT(i-j)] df

+C2 f G2(f) exp U27rfT(i- j)] df. (2)

Assume that N radar pulses are transmitted. The received radar signals are sampled
and delayed, and then they are weighted by complex weights wi and summed. The
clutter output of this delay-line filter is then

Pf =L Lwi *jRij ,
i 3

where w* is the complex conjugate of wj. Since a priori knowledge of the target doppler
frequency is not available, it is convenient to assume that the target doppler has a uni-
formly distributed probability density function. The expected target output power from
the delay-line filter is then

P, = E. E wiwi' 7(4)
i

where E, is the average radar cross section of the target.

The expected input target signal-to-clutter ratio is

SCR = + C2 (5)

The improvement factor, defined as the ratio of the filter output to the input target SCR,
is

I1= (C + C2 ) (6)wiwjR-;(6iij
The correlation function Rij, besides being a function of the spectral density functions of
both clutter types, is also weighted according to the relative amplitudes of the radar cross
sections of the clutter returns. One can notice that the form of the improvement factor
for a multiple-clutter case is different from that for a single clutter case by a factor
(C1 + C2). This is necessary in order to take into account the effect of the weighted
correlation function.

2
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In the previous formulation the case of two types of clutter is considered. However,
this can be extended to cases of more than two types of clutter, provided that these
clutter types are independent and uncorrelated random processes. For simplicity in all
subsequent discussion, only the case of two clutter types will be treated.

Since the absolute amplitudes of the weighting functions ws are irrelevant, one can
normalize the wi by the relation

Wi = W I (7)

It is convenient also to normalize the correlation functions Rij by the relation

R Rij (8)

ij C1+C2(8

The improvement factor hence becomes

I= 1 .(9)
21 21 wiw7Rij
ij

For simplicity the primed wi and Rij are all changed to unprimed notations.

The optimization goal then is to find a set of wi such that the quadratic form

Q(w) =2 1 wi (10)iij
is minimal under the constraint that

LWil = 1. (11)

COVARIANCE MATRIX

Before proceeding further, some of the properties of the correlation function Rij will
be discussed. For the case of a single clutter type, the correlation function rj is the
Fourier transform of the clutter power spectral density function; that is,

ri= E G(f) exp [j27rfT(i-j)] df, (12)

3
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where G(f) is assumed to have a zero mean. If the radar pulses are identical and the
clutter scatterers can be represented as a stationary random process, it is well known [8]
that this correlation function must be real and even and that its value at the origin is the
one, and only one, maximum value in magnitude. That is,

rii > jrij ;

rij = rji-

(13a)

(13b)

The power spectral density function, if it is realizable, must be real, positive, and even;
that is,

G(f) > 0;

G(f) = G(-f).

(14a)

(14b)

Usually the clutter mean doppler will not be zero; however, in this case one can set

if - f - fo

where fo is the mean doppler frequency. Under this condition Eq. (12) becomes

rd -=exp [-j27rf 0 T(i- j)] f G(f')

The radar pulse repetition frequency is defined as

prf = -

One can introduce the following transformation:

f, 10=o ;
prf

= Ff 

exp [27rf 'T(i - j)] df '.

Equation (16) then becomes

00
r!b = exp [-2nirf(i - )]f G(f ") exp [j27rf "(i - j)] df ",

where G(f ") is normalized such that

(15)

(16)

(17)

(18a)

(18b)

(19)

J 00

G(f")df" = 1.
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The spectral density function G(f ") is usually assumed to be a bell-shaped curve,
with most of the energy concentrated in the neighborhood of f" = 0; it may have a long
tail. Furthermore, for an MTI system to be effective, the spectral spread of this G(f")
function must be very small compared with fr, Under this condition the integral part of
Eq. (19) usually is positive, and its value decreases rapidly as the index Ii - il increases.
One good example is the case where G(f n) is a Gaussian function.

Assuming that G(f ") is properly normalized, then one has

rii = 1;

Ir!'l < r!i;

'i= rJi

(20a)

(20b)

(20c)

For the two-clutter case, by use of the same procedure as discussed in the single-
clutter case, one finds

R 1 {C1 exp [-j27rf0 j(i - ()] r(')
ii- C1 + C2 ex -j) r

+C2 exp i-j27rfo2(i - j)] r( )}, (21)

where

r(J) = G1 (f) exp [-27rf(i - j)] df
-0

G2(f) exp 1-2irf(i- j)] df.

The quantity f is the normalized doppler frequency, as shown by Eq. (18b). Quantities
f01 and fo2 are respectively the mean doppler of clutter types one and two. Let

=-C, C2 < C1 (23a)

and

(23b)fo = fo2 - fol-

Equation (21) becomes

RB. - 1 exp [-j27rfol(i - j)]{rl ) + p exp -j2irfo(i- j) rlj)zJ 1 + Ii Il JJI (24)

5
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rij= f0

(22a)

(22b)
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Setting

wi = wi exp (-j2irfOli), (25)

the quadratic form of Eq. (10) becomes

Q(w) = . Lww*Ri, (26)

where

R' = 1 + {rlj') + p exp U21Tfo(i - j)]rj)} . (27)

Replacing wi by wi, however, still maintains the required constraint that

E lwl= 1.

i~~~~~~~
The problem, therefore, is to find a set of wi which will minimize the quadratic

form of Eq. (26). For simplification, one can drop all the primed signs in Eq. (26) and
write it in a matrix form:

Q = iWi IR|HW*I, (28)

where IWI is a column matrix:

Wl

W 2

IWI= . (29a)

WN

and JRI is an N-by-N square matrix:

JR = lRij I . (29b)

The matrix R is usually called the covariance matrix. Its elements Rij are defined in
Eq. (27). One notices that

Rii = 1 (30a)

Ri = R* (30b)

Hence e matrix R is a Hermitian matrix, and its elements, besides being functions of
the c--".er spectral density functions Gl(f) and G2(f), are also functions of p, the ratio
of e: average radar cross section of the two clutter types, and fo, which is the difference
between the mean doppler frequencies of the two clutter types.
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MINIMUM EIGENVALUE AND ITS EIGENVECTOR

In previous discussions it was indicated that an effort would be made to find a vector
WI such that the quadratic form of Eq. (28) is minimum under the constraint

IWITIW*l = 1.

Matrix R is a Hermitian matrix. It is well known that the eigenvalues and eigen-
vectors of matrix R possess the following properties [9]:

* The eigenvalues of a Hermitian matrix are real. Furthermore the quadratic form
of Eq. (28) represents the filter power output with a constant scale factor. It is, there-
fore, must be a positive quantity, provided the wi are not identically zero.* Hence matrix
R is positive definite. Accordingly the eigenvalues of matrix R all must be positive [9],
and one has

X1 > 2 >. *> Xmin > 0, (31a)

where the X.i are the eigenvalues which satisfy

JR - XII = 0, (31b)

where I is an identity matrix.

* Eigenvalues and eigenvectors are related by

IW(i)ITIRII(W(i))*I = Xi, (32)

where IW(i)I is the eigenvector associated with the ith eigenvalue.

* The eigenvectors associated with distinct eigenvalues of a Hermitian matrix are
orthogonal. Moreover, these vectors can be normalized and form a complete orthonormal
set:

jW(i)IT(w(i))*I = 1, i = j

= 0, i +/j. (33)

Let matrix R be an N-by-N matrix. Since the eigenvectors form a complete set, any
vector in this N-dimensional space can be represented as

{WI = E diW(i)J , (34)

where the di are real constants. For this particular vector, the quadratic form of Eq. (28)
becomes

*An exception is when the determinant JRi is zero.

7



JAMES K. HSIAO

Q(W) = E 2xi (35)

due to the orthonormal property of IW(i)I. It is evident that this quadratic form will
assume a minimum value when the vector JWI is so chosen that it is the eigenvector
associated with the minimum eigenvalue Xmin, since d? is always positive. In this case
Eq. (28) becomes

Q(IWNI) = Xmin- (36)

Therefore, to minimize the clutter output, one has to find the minimum eigenvalue
of the covariance matrix R. The eigenvector associated with this minimum eigenvalue
comprises the required filter weights. Solving for matrix eigenvalues is a well-known and
well-treated problem. It will not be discussed further here. Instead, some relevant prop-
erties of this minimum eigenvalue will be pointed out.

The eigenvalues of a matrix are the roots of the polynomial JR - XII = 0. Therefore

N N
E Xi = E Rii . (37a)

i=1 i=1

and

N N

fl Xi = det R < [I Ri . (37b)
i=1 i=1

Since the Rii of the covariance matrix are all unity, the minimum eigenvalue of matrix R
is bounded by

° < Xmin < 1. (38)

This minimum eigenvalue depends on the values of the elements Rij of the covariance
matrix R. The elements R i in turn are a function of the clutter spectral density function
and the correlation time. It can be seen intuitively that the spectral spread of the spec-
tral density function affects the correlation function. If the spectral spread is very great,
the correlation function between pulses will be reduced; hence Rij becomes smaller. For
example, white Gaussian noise has a uniform spectrum across the band; the correlation
function of such noise has the form

Rij = bij- (39)

The covariance matrix in this case becomes a unitary matrix. The eigenvalues of this
matrix are all equal to unity. Under this condition an MTI filter has a 0-dB improvement
factor, no matter how the filter weights are chosen. On the other hand, if the spectral
density is concentrated at the mean doppler frequency and becomes an impulse function,
the correlation between any two pulses would be perfect, and the elements in the covariance

8
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matrix are all equal to unity.* If binomial weights are chosen, the minimum eigenvalue
becomes zero, and the improvement factor becomes infinite. A spectral distribution
which lies between these two extreme cases must have a minimum eigenvalue which lies
within these two limits. Hsiao [11] showed that for a Gaussian spectral density function,
the improvement factor is a monotonic function of the variance of the clutter doppler.

For a multiple-clutter case, this becomes much more complicated. One may notice
from Eq. (24) that the elements Rii are functions of the clutter cross-section ratio p, the
relative mean doppler frequency fo, and the spectral density functions of the two clutter
types. However, as a parallel analogy, one can conjecture that no matter how these
quantities (p, fo, and the spectral spread of the two clutter types) vary, if the Rij are
reduced, the minimum eigenvalues will increase, and vice versa. In the following sections
some of these effects will be examined.

EFFECT OF CLUTTER CROSS-SECTION RATIO

For simplification, assume that the difference of the mean doppler frequencies fo is
zero. Then the covariance matrix elements Ri1 become (see Eq. (27))

RB1 = + [rj M) + pr( , (40)

where matrices JRB , I r1 1, and I r2I have matrix elements Rip, rlP, and rl(2) respectively. The
minimum eigenvalue of matrix R can be represented as

Xm (RB) =1 p [IWoIT I|rIIWoI + p|WoI I r2 I W0* , (41)

where IW0 is the eigenvector associated with the minimum eigenvalue of matrix R. Ma-
trices JrI1 and Ir2I are respectively the covariance matrices for clutter types 1 and 2
alone. They are positive definite. Hence they must have a positive, minimum eigenvalue
of themselves. There is only one vector in N-dimension space which is associated with
this minimum eigenvalue. Vector 1W0 is not necessarily this minimum eigenvector. One
hast

Xmin(rl) < IWoIT Ir1iIW*I (42a)

and

Xmin(r2 ) < IWoT Ir2 l IWOT I. (42b)

Therefore

Xmin(R) > 1 + p [Xmin(rl) + PXnin(r2 )] * (43)

Equality occurs only when the minimum eigenvectors of matrices R, r1 , and r2 are iden-
tical. Equation (43) can be written as

*This effect on the correlation function has been discussed by DiFranco and Rubin [101.
tThis is really the Courant-Fisher min-max theorem. For details see Ref. 9.

9
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Xmin(R) > Cl Xmin(rl) + Cl + C2 Xmin(r 2 ) (44)
C1 + C2 +C

Equation (44) can be easily extended to a general case of more than two clutter types:

Xmin(R) >C + C + C [CiXmin(rl) + C2Xmin(r2) + *-.- CKmin(rK)] * (45)
C1 + 2 * -- -CK

The quantity Xmin(R) represents the minimum clutter output for a multiple-clutter en-
vironment, whereas Xmin(rl), Xmin(r2), ... are respectively the minimum clutter outputs
for single-clutter types. The sum on the right side of Eq. (45) is the weighted average of
the minimum clutter output when the MTI is optimized against a single-clutter type. The
weighting factors are the clutter cross sections C1, C2 , ... , and CK. As an example,
assume that one can design an optimal MTI filter for ground clutter and achieve a mini-
mum clutter output of 10-6 (equivalent to a 60-dB improvement factor) and design
another optimal MTI filter for weather clutter with which one can only achieve a mini-
mum clutter output of 10-2 (20-dB improvement factor). Assume that the radar cross
section of the ground clutter is 100 times larger than that of the weather clutter (equiva-
lent to 20 dB). If a single MTI filter is designed to reject both clutter types simultane-
ously, the clutter output of this filter is then

Xmin(R) > 1 + 100 (100X 10-6 + 10-2 )

> 10-4.

The improvement factor of this MTI filter is no better than 40 dB.

In the derivation of Eq. (45) it is only assumed that signal returns from the clutter
types can be represented as independent random processes. No specific spectral density
function is assumed. Therefore this result should be quite general.

Figures la and lb show some computed results for a two-clutter case. The spectral
density functions of both clutter types are assumed to be Gaussian functions which have
the form

G(f) = o ex (-2). (46)

The standard deviation a is normalized with respect to the radar prf. The first clutter
type has a a of 0.01, and the second clutter type has a a of 0.1. The optimal MTI im-
provement factor is then computed by varying the clutter cross-section ratio. It is
assumed that the first clutter type has a larger radar cross section. The clutter cross-
section ratio is plotted in dB on the abscissa. The number of MTI canceling pulses varies
from N = 2 to 10, and a family of curves is plotted. Figure la shows the case when the
relative mean doppler frequency fo = 0; Fig. lb shows the case for fo = 0.25. One can
see that the improvement factor becomes better when the clutter ratio p increases, be-
cause the first clutter type is weighted more heavily. Since its spectral spread is narrower
(it has a smaller standard deviation), the overall improvement factor becomes better, as

10
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Fig. 1-Optimal MTI improvement factor vs clutter cross-section
ratio for the two-clutter case (N = number of pulses)
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indicated in Eq. (45). As a comparison, Fig. 2 shows the improvement factor for a
single-clutter case. In this plot the improvement factor is plotted against the normalized
standard deviation of the spectral density function of Eq. (46). One notices that for
a = 0.01, a two-pulse canceller can achieve an improvement factor of 28.2 dB, whereas
for a = 0.1, the improvement factor of this same two-pulse canceller is only 8 dB. If the
two-clutter types have the same radar cross section (0-dB clutter ratio), one has

Xrmin(R) >
1

1 + 1 (10-282 + 0.8

> 0.08.

0

r-)
Li

Li
Li_

C-

I O

20

30

10

so

60

70 -
0D. 0OLI 0. 0

SIGMR/PRF

0 10

Fig. 2-Optimal MTI improvement factor vs clutter doppler
standard deviation for the single-clutter case

The improvement factor of the two-clutter case would be less than 11 dB. One sees
from Fig. la that the actual improvement factor is about 10.3 dB. When the relative
mean doppler frequencies of the clutter types are assumed to be zero, the MTI filter
response needs only a single notch to reject both clutter types. However, when the mean
doppler frequencies of these two clutter types are different, two notches are required.
One can see intuitively that this, in general, would cause an increase in the clutter output.

Comparing Figs. la and lb, one sees that, in general, introducing a difference be-
tween the mean doppler frequencies of the two clutter types tends to degrade the im-
provement factor. This confirms the intuitive conjecture. In the next section this effect
of the mean doppler frequency will be discussed in more detail.

EFFECT OF MEAN DOPPLER FREQUENCY

The covariance matrix element RiB is a function of the relative mean doppler fre-
quency between the clutter types, f0 , as shown in Eq. (27) which is now repeated:

12
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RBj(f0 ) = 1 p {rMJ) + p exp [ij27rfo(i- j)]r(j2)} (47)

Since i - j is an integer, Rij(fo) is a periodic function, that is,

Rij (fo ) = Rij (n + o ) 

where n is an integer. Therefore we shall be concerned only with the case in which

0 < fo < 1.

Furthermore, since

Rij(fo) = RB?(1 - fo)

and the eigenvalue can be expressed as

X = IWITIBIIW*I,

where I WI is the eigenvector associated with the eigenvalue X, one has

-* = IW*ITIR*IIWI,

where JR *1 is the conjugate of Jl I. Because X is real, changing the matrix R to its con-
jugate does not affect the eigenvalue. Therefore Xmin(R) must be a function which is
symmetrical with respect to fo = 0.5. In the subsequent discussion consideration will be
limited to the case in which

o < fo < 0.5.

Construct a series of matrices as follows:

1 R 1 2

A2 = 1
R21 1

1

A 3 = B2 1

R3 1

AN =

R1 2 R1 3

1 R 2 3 ;

R 3 2 1

1 R 1 2

?01 1

... RiN

... R2N

RNI RN2 ... 1

(48a)

(48b)

(48c)

13



JAMES K. HSIAO

where the Rij are elements of the covariance matrix as defined in Eq. (47). According to
the Sturmian Separating Theory [9],

Xmin(A2) >1 Xmin(A) > *- >- Xmin(AN), (49)

where Xmin(An) represents the minimum eigenvalue of matrix A, which is the covariance
matrix of an MTI filter having n canceling pulses.

The minimum eigenvalue of A2 can be computed directly as

Xmin(A2 ) = 1 - 1R1 2 1 (50)

According to Eq. (49), one finds

Xmin(An) < 1 - 1R1 2 1. (51)

According to Gerschgorim's theorem [12],

1X - R i I < E RijB1 (52)

for a certain index i. Since Rii = 1 and Xmin is positive and less than unity, one has

Xmin(An) 1> 1 - T IBE I. (53)

Accordingly the Xmin(An) is bounded such that

1 - 1R121 > )Xmin(An) > 1 - IRj. (54)

The summation of IRij I can be either greater than or less than unity. If this summa-
tion is greater than unity, the right side of the inequality of Eq. (54) becomes negative.
However, since Xmin is always positive, the bound of Xmin then becomes

Xmin(An) > 0, if L 1RBjI > 1. (55)
j=ii

Referring to Eq. (47), the amplitude of Rij can be viewed as the amplitude of the sum of
two vectors (Fig. 3). As was discussed earlier, in most cases both r(. ) and r) are posi-
tive. Furthermore, without losing generality, one can assume that

r(P > pr().

14
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(2

R ij prij

.A 0~~~~~~
6

27f 0 (i-j)

G:2w1o (i-j )

Fig. 3-Amplitude of the covariance matrix element Rij

As fo increases from zero to 0.5, the vector pr(2) sweeps around the tip of the vector
rJ . It is evident that BR, I has a maximum value when fo = 0 and decreases to a mini-
mum value when fo increases to 0.5. Therefore both the upper and lower bounds shown
in Eq. (54) have a minimum value at fo = 0 and increase as fo increases from 0 to 0.5.

It has been pointed out earlier that when the correlation function RiB decreases, the
clutter output tends to increase. Therefore one can conjecture that not only the upper
and lower bounds of Xmin(An) increase, but that the minimum clutter output Xmin(An)
itself also increases as fo increases from 0 to 0.5.

In general the correlation function RU becomes negligibly small when the correlation
time is sufficiently long. Therefore, for practical purposes the lower bound 1 - iij JRI
of Xmin(An) reaches a limit when N is sufficiently large. In other words, increasing the
number of pulses does reduce the minimum clutter output up to a point, but beyond
that point a further increase does not yield a better result.

From the previous discussion one can arrive at the following conclusions:

* The minimum clutter output is bounded by two limits, as shown in Eq. (54).

* Both the upper bound and lower bound of Eq. (54) increase as fo increases
towards 0.5.

* It is also conjectured that in general the minimum clutter output Xmin(R) increases
as fo increases.

* Since the lower bound 1 - liyj Rij I reaches a limit as the number of radar pulses
becomes infinite, the MTI improvement factor as a function of the number of
radar pulses is bounded.

To illustrate these points, some computed results are shown in Figs. 4a and 4b.
Again the clutter spectral density functions are assumed to be Gaussian. The normalized
standard deviations of the two clutter types are respectively 0.01 and 0.1. Figure 4a
shows the case when the clutter cross-section ratio is equal to 1. One notices from this
plot that
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* The best improvement factor occurs when the mean doppler frequency is zero.

* Increasing the relative mean doppler frequency degrades the MTI performance. A
worst case occurs when fo = 0.5.

* Increasing the number of radar pulses in general improves the performance; however,
as the number of pulses becomes large, the incremental improvement in performance
decreases rapidly.

Figure 4b shows the case when the clutter cross-section ratio is 20 dB. Since it is as-
sumed that the clutter type with a lower standard deviation has a larger radar cross section,
the improvement factor in general is better in this case. However, other properties are
similar to those of Fig. 4a.

CONCLUSION

In this report the design of an optimal MTI filter to reject multiple clutter types is
presented. It is found that the optimal performance of such a filter depends on the
spectral density functions, average radar cross sections, and the relative mean doppler
frequencies of these clutter types.

It is shown that the optimal improvement factor of such a filter is bounded by the
weighted average of the improvement factors for the individual clutter types. The average
is weighted in accordance with the radar cross section of the clutter types. It is also
shown that the minimum clutter output (the reciprocal of the optimal improvement
factor) of such a filter is bounded by two limits. Both of these limits are functions of
the relative mean doppler frequency of the clutter types, fo. As this fo increases towards
0.5, the performance of the MTI system degrades. The worst performance occurs when
fo is equal to half of the radar prf.
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